No, all sizes of llama 3.1 should be able to handle the same size context. The difference would be in the “smarts” of the model. Bigger models are better at reading between the lines and higher level understanding and reasoning.
No, all sizes of llama 3.1 should be able to handle the same size context. The difference would be in the “smarts” of the model. Bigger models are better at reading between the lines and higher level understanding and reasoning.
Wow, that’s an old model. Great that it works for you, but have you tried some more modern ones? They’re generally considered a lot more capable at the same size
Increase context length, probably enable flash attention in ollama too. Llama3.1 support up to 128k context length, for example. That’s in tokens and a token is on average a bit under 4 letters.
Note that higher context length requires more ram and it’s slower, so you ideally want to find a sweet spot for your use and hardware. Flash attention makes this more efficient
Oh, and the model needs to have been trained at larger contexts, otherwise it tends to handle it poorly. So you should check what max length the model you want to use was trained to handle
Careful, if you spend 8 hours playing with your deck you might go blind